Читать «Космическая технология и производство» онлайн - страница 28

Сергей Дмитриевич Гришин

Результаты экспериментального исследования особенностей выращивания кристаллов алюмокалиевых квасцов из их пересыщенного водного раствора, которое было проведено на станции «Салют-5», изложены в предыдущей главе.

Выращивание кристаллов из паровой фазы. Выращивание кристаллов парофазовым методом широко используется для получения зпитаксиальных пленок полупроводниковых материалов. Принципиальная схема устройства для выращивания кристаллов из паровой фазы была показана на рис. 5. В обычных условиях метод чувствителен к возбуждению конвекции, которая ведет к возникновению дефектов кристаллической решетки. Кроме того, существует тенденция к поликристаллизации, большие кристаллы этим (методом на Земле получать трудно. В космических условиях можно рассчитывать на ограничение роли конвекции и улучшение качества получаемых материалов, а также на увеличение размеров монокристаллов.

Ожидаемые эффекты были также исследованы в эксперименте на станции «Скайлэб». Техника выращивания кристаллов из паровой фазы была применена к селениду и теллуриду германия. Были получены кристаллы, качество которых оказалось выше, чем у контрольных образцов, приготовленных на Земле. Удалось получить плоские монокристаллы селенида германия размером 4 × 17 мм и толщиной около 0,1 мм. На Земле были получены лишь мелкие кристаллики с несовершенной структурой.

С учетом этих результатов при совместном полете кораблей «Союз» и «Аполлон» был поставлен такой эксперимент. Здесь техника выращивания кристаллов из паровой фазы была применена к более сложным системам: германий—селен—теллур и германий—сера—селен. Образцы, полученные в космических условиях, также оказались более совершенными, а их структура более однородной.

Оптическое стекло и керамика

Влияние условий, близких к невесомости, на технологию производства стекла может быть различным. Во-первых, в невесомости можно осуществить бесконтейнерное плавление, резко уменьшив таким образом поступление в материал вредных примесей со стенок тигля, в котором варится стекло. Во-вторых, можно обеспечить стабильность жидких смесей, компоненты которых сильно различаются по плотности. В-третьих, отсутствие свободной конвекции уменьшает вероятность появления случайных центров кристаллизации, способствует улучшению однородности. В-четвертых, преобладающую роль капиллярных сил можно использовать для того, чтобы придать жидкому расплаву перед затвердеванием необходимую форму (волокна, пленки и т. п.). Использование перечисленных факторов позволяет рассчитывать на (получение в процессе космического производства улучшенных или качественно новых сортов стекол, а также изделий из стекла.

На рис. 12 показано, как меняется с температурой объем расплавленной стеклообразующей массы. Когда по мере остывания расплава достигается температура затвердевания Тm, дальнейший процесс может развиваться двояко. Если в расплаве присутствуют зародыши (примеси, поступающие со стенок тигля, местные неоднородности по химическому составу и т. п.), то в объеме может начаться кристаллизация и объем будет уменьшаться в соответствии с нижней кривой. Если же образование зародышей кристаллизации удается подавить, а скорость охлаждения сделать достаточно большой, то возникнет сначала состояние переохлажденной жидкости, которая при достижении температуры стеклования Тg переходит в стекло (верхняя кривая на рис. 12). В космосе возможен процесс бестигельной варки стекла, и однородность расплава будет выше ввиду отсутствия конвекции. Эти преимущества открывают возможности получения на борту космических аппаратов улучшенных и новых сортов оптического стекла.