Читать «Компьютерра PDA N150 (17.12.2011-23.12.2011)» онлайн - страница 19
Компьютерра
Так что в области программного обеспечения мы имеем абсолютно реальные и абсолютно неопознанные объекты. Которые, если мы расслабимся, принесут нам куда больше проблем, нежели жукоглазые монстры. Сомневаетесь? А отключите-ка антивирус с файрволом!
Дмитрий Шабанов: Цепочка следов антилопы
Автор: Дмитрий Шабанов
Со времён Ньютона наука знает, как описать движение одиночного тела, не взаимодействующего с иными телами. Оно будет двигаться прямолинейно и с постоянной скоростью под воздействием силы инерции. Кроме того, мы знаем, как ведут себя два тела (которые для упрощения можно представить как две точки, обладающие массой): они притягиваются друг к другу с силой, пропорциональной произведению их масс и обратно пропорциональной расстоянию между ними. Раз Исаак Ньютон в XVII веке решил задачу для одной и для двух точек, наверное, с тех пор наука значительно продвинулась в своем понимании взаимодействия тел?
Так вот, общее решение задачи для трёх тел не найдено до сих пор. Возможность решений этой задачи для некоторых частных случаев показал в конце XVIII века Леонард Эйлер, и вскоре такие решения получил Жозеф Лагранж. После длительных усилий Анри Пуанкаре в конце XIX века доказал, что такая задача не имеет прямого математического решения: она не решается через алгебраические и трансцедентные функции координат и скоростей. В начале XX века финский математик Карл Зундман нашёл решение этой задачи в виде сходящихся рядов. Увы, ряды Зундмана не позволяют получить долгосрочный и точный прогноз динамики трёх тел и, кроме того, требуют для своего вычисления колоссальной, малодоступной даже сейчас вычислительной мощности.
А как в таком случае можно управлять движением космических кораблей? Решая ограниченную задачу трёх тел, вычисляют движение тела малой массы (космического корабля) и поле притяжения двух крупных тел (например, Земли и Луны), на движение которых малое тело не влияет. А кроме того, управление космическими кораблями включает в себя постоянное внесение корректив в их движение.
Постойте-постойте. Ведь реальные небесные тела (кстати, представляющие из себя не материальные точки, а сплошь и рядом сложные комплексы из многих частей с разной плотностью) не производят никаких вычислений, решая, куда им двигаться! Как им это удаётся?
Другой пример. Почти в каждой клетке нашего тела непрерывно работает множество рибосом - молекулярных роботов, соединяющих аминокислотные остатки в соответствии с программой, отражённой в структуре РНК. В секунду к цепочке присоединяются десятки аминокислот, несколько секунд - и сложный белок готов. Синтезированный полимер представляет собой гибкую цепочку, на которой регулярно расположены разнообразные радикалы - заряжённые и нет, полярные и неполярные, способные к взаимодействию друг с другом и индифферентные. Белковая цепь начинает сворачиваться определённым образом ещё по мере своего роста; иногда на характер такого сворачивания влияют белки-шапероны (их название происходит от "шафера", в нашей традиции называемого "свидетелем"), в некоторых случаях уже синтезированная цепь подвергается химической модификации, влияющей на взаиморасположение её частей.