Читать «Заметки о космической фантастике» онлайн - страница 17

Вадим Скумбриев

Кстати о размерах и расстояниях: есть известный штамп, связанный с опаснейшими астероидными полями. Это когда храбрый пилот проявляет чудеса ловкости, лавируя между огромными каменными глыбами, хаотично летающими в поле, окружающем планету… Нет. Так не бывает.

Во-первых, плотность астероидов в таких полях настолько мала, что с большой вероятностью вы даже не заметите, что пролетали сквозь такое поле. Для сравнения, возьмите футбольный стадион и бросьте в воздух над ним несколько пылинок, постаравшись распределить их по всему стадиону. Так вот, в реальном поясе астероидов камни летают друг от друга ещё дальше.

Во-вторых, относительные скорости астероидов таковы, что пилоту не хватит никакой нечеловеческой реакции, чтобы уклониться от летящей навстречу глыбы.

В-третьих, даже если представить себе такое плотное поле, из-за взаимных столкновений (почему-то с кораблями всегда сталкиваются глыбы, и никогда — друг с другом) все большие камни быстро станут маленькими.

В космосе никто не летает по прямой. Причина лежит в том, что Земля отнюдь не стоит на месте, а сам аппарат обычно сперва выходит на околоземную орбиту и только потом улетает в космос на вольные хлеба, имея, помимо второй космической скорости относительно Земли, ещё и инерционное движение по орбите всё той же Земли. Кроме того, он движется в гравитационном поле Солнца и планет, и «выпрямление» траектории потребовало бы постоянной работы корректирующих двигателей, то есть дополнительного расхода топлива. Разумеется, это нафиг никому не нужно.

Поэтому сейчас в основном с орбиты на орбиту переходят с помощью так называемой Гомановской траектории, суть которой заключается в использовании короткого импульса в определённых точках орбит (в простейшем случае это перицентр и апоцентр). На словах, разумеется, ни хрена не ясно, так что вот картинка:

1 — орбита Земли, 3 — орбита, скажем, Марса. С помощью первого импульса аппарат сходит с орбиты Земли в точке 2 и начинает движение по эллиптической траектории к орбите Марса. Достигнув её, он снова включает двигатели и с помощью второго импульса выпрямляет полёт в точке 3, переходя уже на орбиту Марса.

Однако у этого метода есть существенные недостатки, если мы говорим об экономически целесообразных космических полётах. Главный из них, это, разумеется, время. Полёт по такой траектории в случае Марса займёт около 9 месяцев в лучшем случае, для внешних планет это значение сильно увеличивается. Кроме того, необходимо учитывать расположение небесных тел друг относительно друга. Вот, например, как летел упомянутый выше зонд Dawn с ионными двигателями:

Как можно заметить, ему пришлось совершить почти два витка вокруг Солнца и гравитационный манёвр у Марса (не Юпитер, но тоже сойдёт), чтобы добраться до Весты, хотя прямое расстояние между Землёй и Вестой гораздо меньше. А потом и ещё половину, чтобы добраться к Церере, хотя опять-таки прямой путь куда короче. Ионные двигатели, конечно, разгоняют корабль, но чуда не делают (на схеме thrust — это участки с работающим двигателем, coast — пассивный полёт). Космос — он такой. Жестокий.