Читать «Жидкости (оптимизированы иллюстрации)» онлайн - страница 136
Марк Медовник
Чтобы технология лаборатории на чипе работала, она должна иметь механизм, позволяющий устройству передвигать крохотные капельки жидкости и манипулировать ими. Биологические организмы, разумеется, прекрасно это умеют. Выйдите в сад во время летнего ливня, и вы увидите листья, которые отталкивают воду так эффективно, что капли дождя отскакивают от них. Давно известно, например, что листья лотоса обладают такой супергидрофобной способностью; но никто не знал, почему так, пока совсем недавно с помощью электронного микроскопа не удалось заметить на их поверхности нечто странное. Как ученые и предполагали, листья покрыты воскоподобным веществом, которое отталкивает воду; удивительно, однако, что оно расположено на поверхности листа в виде миллиардов микроскопических пупырышков. Когда капля воды лежит на такой восковой поверхности, она пытается минимизировать площадь контакта из-за высокого поверхностного натяжения между ними. Пупырышки на листе лотоса резко увеличивают площадь воска, вынуждая каплю шатко балансировать на верхушках пупырышков. Капля в этом состоянии становится мобильной, быстро соскальзывает с листа, собирая по пути крохотные частицы пыли, всасывая их в себя подобно крохотному пылесосу. Благодаря этому лист лотоса всегда остается блестящим и чистым.
В ближайшие годы обработка поверхностей с целью сделать их супергидрофобными станет, вероятно, крупным бизнесом. Это позволит нам не только проводить капельки через внутренние механизмы лаборатории на чипе, но и делать многое другое. Мы сможем, например, добиться того, чтобы вода не смачивала окна и они всегда оставались чистыми, как лист лотоса. Возможно, мы сумеем разработать водонепроницаемую одежду, которая будет собирать воду, падающую на нее, и транспортировать ее по крохотным трубочкам в специальный карман, чтобы позже ее можно было выпить. Такой дизайн подсказала нам шипастая ящерица молох, которая, чтобы напитаться влагой, собирает каждую дождинку, падающую на ее кожу, и впитывает ее через крохотные канальцы посредством капиллярного эффекта.
Потенциал подобной технологии водосбора для миллиардов людей, не имеющих доступа к постоянным источникам чистой воды, громаден, особенно если удастся также разработать методы дешевой фильтрации. Возможно, этим займется новый материал под названием оксид графена. Это двумерный слой атомов углерода и кислорода. В виде мембраны он действует как барьер для большинства типов химических молекул, но легко пропускает молекулы воды. Так что он очень похож на своего рода сито. Из него мог бы получиться чрезвычайно эффективный и дешевый водяной фильтр, способный даже морскую воду сделать пригодной для питья.