Читать «Всемирный разум» онлайн - страница 55

Майкл Хорост

С нашей точки зрения, очень удобно, что «продвинутая» деятельность мозга совершается именно на его поверхности. Это означает: чтобы «подслушать» немало интересного, нам не придется углубляться более, чем на два миллиметра. Кроме того, какую бы хирургическую операцию нам ни понадобилось провести, сделать ее будет легче и безопаснее.

Неокортекс, как и многие другие ткани мозга, образован из особых клеток, называемых нервными. Каждая из них – или нейрон – имеет три основных части. Дендриты предназначены для принятия «входящих» сигналов (inputs), поступающих от других нейронов. Тело , или ядро нейрона, представляет собой основную часть такой клетки. И есть еще аксон, назначение которого – посылать «исходящие» сигналы (outputs). У большинства нейронов есть по одному аксону, однако последний обычно на некотором расстоянии от ядра начинает ветвиться, благодаря чему может соприкасаться с дендритами многих других нейронов.

Нейрон

Нейрон должен воспринимать электрические разряды, которые называются потенциалами действия и передаются дендритами. Обрабатывая входящую информацию, он «решает», передать ли ему по аксону свой импульс потенциала действия. То есть нейрон – это, в сущности, маленькое устройство для принятия решений. Вопрос о том, сколько в человеческой голове подобных решающих устройств, все еще обсуждается, однако обычно приводится цифра 100 миллиардов [77] .

Область, в которой аксон одного нейрона встречается с дендритами другого, называется синапсом . Сила последних может различаться. Некоторые передают сигнал (потенциал действия) даже при слабом возбуждении, другие же нуждаются в более высоком уровне электрического заряда. Сила конкретного синапса может изменяться, иногда – очень быстро. Более того, нейроны постоянно создают новые синаптические связи, а в некоторых случаях – разрушают уже созданные. Вот почему геометрия связей между ними постоянно изменяется. Поэтому точная конфигурация синапсов в определенный момент времени показывает, в какой именно области размещается очаг нервного возбуждения.

Сколько синапсов включает в себя человеческий мозг? Каждый кубический миллиметр новой коры содержит их от 860 миллионов до 1,3 миллиардов [78] . По примерной оценке, в неокортексе их – от 164 до 200 триллионов. Общее же число синапсов в мозге в целом – значительно больше. В одном из исследований указывается: для составления карты-схемы всех синаптических связей мозга (при существующем уровне технологического развития) понадобилось бы 10 тысяч работающих в автоматическом режиме микроскопов и 30 лет непрерывных наблюдений, а для записи полученных данных – компьютерный жесткий диск емкостью в 100 миллионов терабайт [79] .

Это значит, что человек, который ночью смотрит в усыпанное мириадами звезд небо и думает, как он мал, воспринимает все ошибочно. Да, физически человеческое существо меньше Галактики. Однако его головной мозг содержит столько же нейронов, сколько она – звезд. А именно – 100 миллиардов. (Забавно, но это сущая правда). К тому же синаптические связи между нейронами позволяют передавать объем информации больший, чем тот, что возможен между звездами. Воздействовать друг на друга силами гравитации и, если расстояние не слишком велико, обмениваться тепловым излучением – вот и все, что те могут. Между тем, происходящее в головном мозге каждого из нас – на много порядков сложнее, чем что-либо в небе у нас над головами.

И лучшее тому доказательство я вижу вот в чем: когда бы человек ни говорил себе, как он мал, Галактике нечего сказать ему в ответ. Она недостаточно сложна, чтобы иметь свои собственные мысли. Путь эволюции, вероятно, таков, что в процессе развития возникают меньшие по размерам, но все более сложные формы жизни. Галактики очень стары. Мозги же тех, кто обладает самосознанием, пользуется языком и создает орудия труда, напротив, очень молоды.

Именно синапсы, а не нейроны превращают мозг в то, чем он является. Синаптические связи возникают и исчезают легко, потому что два нейрона в действительности никогда не соприкасаются в полной мере – между ними всегда остается небольшая щель. Этот промежуток могут заполнять особые химические вещества, и их присутствие позволяет дендритам передавать сигнал ядрам нейронов. Фундаментальным можно считать тот факт, что мозг представляет собой не столько электрическую, сколько химическую сеть взаимосвязей. В самих нейронах информация передается посредством электрических импульсов, но между нейронами – с помощью химических веществ.