Читать «Биологическая химия» онлайн - страница 27
Владимир Валерьянович Лелевич
Третичная структура ДНК различается у прокариотических и эукариотических организмов. У бактерий и вирусов, а также в митохондриях и хлоропластах эукариот ДНК имеют либо линейную, либо кольцевую форму, двух- или одноцепочечную. Двухцепочечные ДНК легко переходят в суперспирализованное состояние в результате дополнительного скручивания в пространстве двухспиральной молекулы.
Третичная структура ДНК эукариотических клеток также выражена в многократной суперспирализации молекулы, однако, в отличие от прокариот, она осуществляется в форме комплексов ДНК с гистоновыми и негистоновыми белками. Такие дезоксинуклеопротеины называются хроматином.
Выделяют следующие уровни упаковки хроматина (Рис 5.1):
1. Нуклеосомный. Четыре гистона Н2А, Н2В, Н3 и Н4 (по 2 каждого типа) образуют октамерный белковый комплекс, который называют нуклеосомным кором. Молекула ДНК накручивается на поверхность этого кора, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК является основной структурной единицей хроматина и называется нуклеосомой. ДНК, соединяющую нуклеосомные частицы, называют линкерной ДНК. С нею связываются молекулы гистона Н1, защищая эти участки от действия нуклеаз.
2. Соленоидный. Нуклеосомная нить скручивается в более толстые фибриллы – соленоиды. Их также называют хроматиновыми фибриллами.
3. Петлевой. Соленоидная фибрилла образует петли и дополнительно упаковывается.
4. Метафазная хромосома. Петельные домены дополнительно конденсирутся и спирализуются, приобретают четкие формы.
Рис. 5.1. Уровни организации хроматина
Негистоновые белки хроматина представлены сотнями самых разнообразных ДНК-связывающих протеинов. К этой группе относят семейство белков типа «цинковые пальцы», белки высокой подвижности (HGM-белки), ферменты репликации, транскрипции и репарации. Таким образом, при участии структурных, регуляторных белков, а также ферментов, участвующих в синтезе ДНК и РНК, нить нуклеосом преобразуется в высококонденсированный комплекс белков и нуклеиновых кислот.
Организация генома человека
Общая длина ДНК гаплоидного набора из 23 хромосом человека составляет 3,5·109 пар нуклеотидов. Этого количества ДНК достаточно для создания нескольких миллионов генов. Однако истинное число структурных генов находится в области 40 тысяч. Такую избыточность ДНК объясняют как сложной организацией генов, так и наличием повторяющихся участков ДНК.
В геноме человека примерно 60% приходится на участки ДНК, представленные в виде одной или нескольких копий. Это так называемые уникальные последовательности, несущие информацию о структуре специфических белков, и представляющие собой структурные гены. Нередко уникальные последовательности образуют мультигенные семейства, располагающиеся в виде кластеров в определенных областях одной или нескольких хромосом. Примерами мультигенных семейств могут служить гены α- и β-глобинов, тубулинов, миоглобина, актина и трансферрина. В мультигенных семействах наряду с функционально активными генами содержатся псевдогены – мутационно измененные последовательности, не способные транскрибироваться или продуцирующие функционально неактивные генные продукты.