Читать «Азбука рисунков природы» онлайн - страница 51

Сергей Афанасьевич Зимов

Паутины трещин

Этот раздел посвящен структурам разрывного типа. Поверхностные трещины в непосредственной близости от себя полностью разгружают напряжения в направлении, перпендикулярном трещине, а в параллельном направлении — лишь частично. В первом приближении при упругом поведении среды степень разгрузки в этом направлении можно охарактеризовать величиной коэффициента Пуассона. Если растягивать брусок, то одновременно с этим он становится тоньше. Коэффициент Пуассона показывает отношение этих деформаций. Теоретически он не может превышать 0,5. Это значит, что разгрузка напряжений возле трещины в направлении, параллельном ей, не может превышать 50% от первоначальных напряжений. Разброс этой величины у разных материалов относительно небольшой, обычные значения — 0,25—0,35. Минимальные значения у кварцевого стекла — 0,17, а значения, близкие 0,5, наблюдаются у гелей (это, например, обычный студень или желе). Гель — жидкость, запечатанная в тонкий упругий каркас. А жидкость объемно несжимаема, поэтому коэффициент Пуассона у гелей почти 0,5. Шкала узкая — 0,17—0,5. Но эти различия для рисунка структуры могут быть важными. При микронеоднородности среды трещина неровная, на ее берегах возникают локальные участки концентрации напряжений. В этом случае при малом значении коэффициента Пуассона у берега трещины в перпендикулярном ей направлении напряжения почти не разгружены, и за счет концентрации напряжений на сколах трещины от нее могут отходить боковые притоки, т. е. возможен вариант ветвящейся структуры. Если же этот коэффициент близок к 0,5, то трещины будут редко подходить одна к другой и полосы между параллельных трещин будут разбиваться поперечными только при сильном дополнительном наращивании напряжений. В итоге могут возникнуть структуры, близкие к рассмотренным выше идеализированным структурам, у которых элемент вблизи себя разгружает потенциал во всех направлениях — вплоть до спиралей (см. рис. 94—100).

На материалах со средними значениями коэффициента Пуассона возможно и то, и другое. Но обычно боковые притоки отходят от трещин лишь на их крутых поворотах, а трещины, заходящие в зону разгрузки другой трещины, часто вязнут и не доходят до нее. Это главные особенности взаимоотношения трещин отрыва. И еще — одна трещина не может пересечь другую.

Анализ абстрактных рисунков мы начали с рисунков, появившихся в резко анизотропном поле. Примером развития рисунка трещин усыхания в таком поле может быть обычная сырая доска, лежащая под лучами жаркого солнца. На ней из-за резкой анизотропности прочностных свойств будут развиваться только продольные трещины. Если ту же доску бросить в костер и дать ей обуглиться, то на поверхности угля мы можем увидеть тетрагональные сетки трещин, соответствующие схеме, изображенной на рис. 71, 72, а схемы рис. 78—80 можно наблюдать на срезе бревна. То есть степень анизотропности древесного угля меньше, чем продольного среза дерева. Такие же рисунки, как на схемах 71, 72, мы можем увидеть и на комбинированных средах (доска, покрытая слоем старой масляной краски). Здесь анизотропность доски задает направление генеральных трещин на краске, они идут вдоль волокон дерева. Но если мы будем рассматривать трещины на узких окрашенных деревянных брусках, то здесь генеральные трещины будут идти поперек древесных волокон, потому что грани бруска разгружают поперечные растягивающие напряжения. Если брусок пошире, то у краев трещины будут его пересекать, а ближе к центру пойдут вдоль (рис. 124), как на реальном рисунке (балконная дверь).