Читать «Обман чувств» онлайн - страница 34

Франсиско Мартин Касальдеррей

Я утверждаю, что столько раз, сколько расстояние между двумя названными точками содержится в любой из линий, выходящих из этих точек и пересекающихся друг с другом, столько раз промежуток между концами коридора содержится в расстоянии от любой из этих двух точек до Уччелино.

На рисунке вы увидите числовые обозначения, и для примера мы скажем, что от одной точки до другой — 35 унций [унция = 1/12 фута], а от пересечения обеих линий до одной из этих точек — 385 унций. Так как 35 содержится в 385 одиннадцать раз, то окажется, что в расстоянии между коридором и Торре дель Уччелино одиннадцать раз содержится промежуток, который вы брали в коридоре. Этот способ измерения будет вам служить на небольших расстояниях, а при расстояниях больших требуется прибор более крупный».

«Вилка», «огненная линия» и «овальная линия» Дюрера

Среди множества геометрических чертежей, приведенных Дюрером в «Правилах измерения линий, плоскостей и целых тел при помощи циркуля и угольника», присутствует чертеж конических сечений. Книга Дюрера начинается следующими словами:

«Проницательнейший из всех мужей, Евклид, заложил основания геометрии. Тому, кому они хорошо известны, не потребуется ничего из приведенного далее, что я пишу лишь для юношей и тех, кто должным образом не обучен».

Художники, согласно Дюреру и другим живописцам той эпохи, должны были в равной степени изучать технику рисунка и геометрию и одинаково свободно обращаться как с кисточкой, так и с циркулем и линейкой. Дюрер считал, что художник должен уметь «измерять», поэтому назвал свою книгу «Правила измерения».

Дюрер изучил математику и перспективу во время путешествий в Италию. Вернувшись в родной Нюрнберг, в библиотеках своих друзей он познакомился с классическими и современными математическими трудами, которые в то время только начинали печататься, и книгопечатание было одной из самых процветающих отраслей города.

Он изучил «Начала» Евклида, а также труды Пьеро делла Франческа и Леона Баттисты Альберти. В «Правилах измерения» Дюрер пытается предложить геометрические методы и описать их понятным для художников и ремесленников образом. Он не уделял особого внимания ни доказательствам, ни чистой теории. Он рассмотрел линейную перспективу, правильные многоугольники, многогранники и Платоновы тела, для которых привел точный и удобный алгоритм построения. Он также изучил использование геометрии в типографике, инженерном деле и архитектуре.

Чтобы дать читателю представление о его стиле и строгой и четкой манере изложения, приведем фрагмент его книги, где он описывает метод построения эллипса.

«Математики древности указывали, что существует три способа выполнить сечение конуса. Все три различны между собой и не представляют по своей форме круг как основание конуса. <…> Каждое из трех сечений являет собой особую линию, построение которой я объясню. Первое из этих сечений, которое пересекает конус наклонно, не рассекая его основания, знатоки называют эллипсом. <…> Второе сечение проводится параллельно стороне ab конуса или другой [иными словами, его образующей], и знатоки зовут его параболой. Третье сечение есть вертикальная линия, параллельная линии, соединяющей центр основания конуса с вершиной, и знатоки зовут это сечение гиперболой. Мне неизвестно, имеют ли эти линии названия на немецком языке, но я присвою им названия, чтобы их можно было различить. Эллипс я буду называть овальной линией, так как его контур по форме почти равен яйцу. Параболу я буду называть огненной линией, поскольку зеркало такой формы разжигает огонь. Наконец, гиперболу я назову линией в форме вилки.