Читать «K читателям русского издания» онлайн - страница 84

ves

Это открытие показывает, что в солнечной системе законы Ньютона абсолютно верны. Но верны ли они на расстояниях, больших, чем относительно малые расстояния до планет? Во-первых, можно поставить вопрос: притягивают ли звезды друг друга так же, как планеты? Положительные доказательства этого мы находим в двойных звездах. На фиг. 7.6 показана двой­ная звезда – две близкие звезды (третья звезда нужна, чтобы убедиться, что фотография не перевернута); вторая фотография сделана через несколько лет.

Фиг. 7.6. Система двойной звезды.

Сравнивая с «фиксированной» звез­дой, мы видим, что ось пары повернулась, т. е. звезды ходят одна вокруг другой. Вращаются ли они в согласии с законами Ньютона? Тщательные замеры относительной позиции двойной звезды Сириус даны на фиг. 7.7.

Фиг. 7.7. Орбита Сириуса В по отношению к Сириусу А.

Получается превосходный эллипс (измерения начаты в 1862 г. и доведены до 1904 г.; с тех пор был сделан еще один оборот). Все сходится с законами Ньютона, кроме того, что Сириус А получается не в фокусе. В чем же дело? А в том, что плоскость эллипса не совпадает с «плоскостью неба». Мы видим Сириус не под прямым углом к плоскости его орбиты, а если на эллипс посмотреть сбоку, то он не перестанет быть эллипсом, но фокус мо­жет сместиться. Так что и двойные звезды можно анализировать в согласии с тре­бованиями закона тяготения.

Справедливость закона тяготения на больших дистанциях видна из фиг. 7.8.

Фиг. 7.8. Шаровое звездное скопление.

Нужно быть лишенным воображения, чтобы не увидеть здесь работы тяготения. Здесь показано одно из красивейших небесных зрелищ – шаровое звездное скопление. Каждая точка – это звезда. Нам кажется, будто у центра они набиты вплотную; происходит это из-за слабой чувствительности телескопа; на самом деле промежутки между звездами даже в середине очень велики, а столкновения крайне редки. Больше всего звезд в цен­тре, а по мере удаления к краю их все меньше и меньше. Ясно, что между звездами действует притяжение, т. е. что тяготение существует и на таких гигантских расстояниях (порядка 100 000 диаметров солнечной системы).

Но отправимся дальше и рассмотрим всю галактику (фиг. 7.9).

Фиг. 7.9. Галактика.

Форма ее явственно указывает на стремление ее вещества стянуться. Конечно, доказать, что здесь действует закон обрат­ных квадратов, нельзя; видно только, что и на таком протяжении есть силы, удерживающие всю галактику от развала. Вы може­те сказать: «Ладно, все это разумно, но почему же эта штука, галактика, уже не похожа на шар?» Да потому, что она вертится, что у нее есть момент количества движения (запас вращения); если она сожмет­ся, ей некуда будет его де­вать; ей остается только сплюснуться. (Кстати, вот вам хорошая задача: как образу­ются рукава галактики? Чем определяется ее форма? Детально­го ответа на эти вопросы еще нет.) Ясно, что очертания галак­тики определяются тяготением, хотя сложности ее структуры пока невозможно полностью объяснить. Размеры галактик – около 50 000–100 000 световых лет (Земля находится на рас­стоянии световых минут от Солнца).