Читать «K читателям русского издания» онлайн - страница 76

ves

Для описания местоположения частицы можно ввести плот­ность вероятности , так что будет вероятностью того, что частица находится где-то между х и х+x. Если положение частицы установлено достаточно хорошо, то пример­ный вид функции может иллюстрировать график, при­веденный на фиг. 6.10, а.

Фиг. 6.10. Плотности вероят­ности координаты, (а) и скорости (6) частицы.

Точно такое же положение и со ско­ростью частицы: она тоже неизвестна нам точно. С некоторой вероятностью частица может двигаться со скоростью, находящейся в интервале между и .

Один из основных результа­тов квантовой механики состоит в том, что эти две плотности р1 (х) и р2 (v) не могут быть выбраны независимо в том смысле, что они обе не могут быть сколь угодно узкими. Если мы возьмем «полуширины» кривых и и обозначим их соответственно [x] и [v] (см. фиг. 6.10), то природа требует, чтобы произведение этих двух полуширив было не меньше величины h/m, где mмасса частицы, a hнекоторая фундаментальная физическая постоянная, называ­емая постоянной Планка. Это соотношение записывается сле­дующим образом:

[x][v]>=h/m (6.22)

и называется принципом неопределенности Гейзенберга.

Чтобы это соотношение выполнялось, частица должна себя вести очень курьезно. Вы видите, что правая часть соотноше­ния (6.22) постоянна, а это означает, что если мы попытаемся «приколоть» частицу в каком-то определенном месте, то эта попытка окончится тем, что мы не сможем угадать, куда она летит и с какой скоростью. Точно также если мы попытаемся заставить частицу двигаться очень медленно или с какой-то определенной скоростью, то она будет «расплываться», и мы не сможем точно указать, где она находится.

Принцип неопределенности выражает ту неясность, которая должна существовать при любой попытке описания природы. Наиболее точное и полное описание природы должно быть только вероятностным. Однако некоторым физикам такой спо­соб описания приходится не по душе. Им кажется, что о реаль­ном поведении частицы можно говорить только, когда од­новременно заданы импульсы и координаты. В свое время на заре развития квантовой механики эта проблема очень сильно волновала Эйнштейна. Он часто качал головой и говорил: «Но ведь не гадает же господь бог «орел – решка», чтобы решить, куда должен двигаться электрон!» Этот вопрос беспо­коил его в течение очень долгого времени, и до конца своих дней он, по-видимому, так и не смог примириться с тем фактом, что вероятностное описание природы – это максимум того, на что мы пока способны. Есть физики, которые интуитивно чувст­вуют, что наш мир можно описать как-то по-другому, что можно исключить эти неопределенности в поведении частиц. Они продолжают работать над этой проблемой, но до сих пор ни один из них не добился сколько-нибудь существенного результата.

Эта присущая миру неопределенность в определении положения частицы является наиболее важной чертой описания структуры атомов. В атоме водорода, например, который состоит из одного протона, образующего ядро, и элек­трона, находящегося где-то вне его, неопределенность в место­нахождении электрона такая же, как и размеры самого атома! Мы не можем поэтому с уверенностью сказать, где, в какой части атома находится наш электрон, и уж, конечно, не может быть и речи ни о каких «орбитах». С уверенностью можно гово­рить только о вероятности p(r)V обнаружить электрон в элементе объема V на расстоянии r от протона. Квантовая ме­ханика позволяет в этом случае вычислять плотности вероятно­сти p(r), которая для невозмущенного атома водорода равна .