Читать «K читателям русского издания» онлайн - страница 64

ves

Фиг. 5.9. Фотография вирусов, полученная с помощью электрон­ного микроскопа. Видна «большая» сфера, показанная для сравнения: диаметр ее равен м, или 2000 .

А с помощью косвенных измерений (своего рода триангуляции в микроскопическом масштабе) мож­но измерять все меньшие и меньшие объекты. Сначала из наблю­дений отражения света короткой длины волны (рентгеновских лучей) от образца с нанесенными на известном расстоянии мет­ками измеряется длина волны световых колебаний.

Затем по картине рассеяния того же света на кристалле можно опреде­лить относительное расположение в нем атомов, причем резуль­тат хорошо согласуется с данными о расположении атомов, по­лученными химическим путем. Таким способом определяется диаметр атомов (около м).

Дальше в шкале расстояний имеется довольно большая неза­полненная «щель» между атомными размерами м и в раз меньшими ядерными размерами (около м). Для опре­деления ядерных размеров применяются уже совершенно дру­гие методы: измеряется видимая площадь , или так называемое эффективное поперечное сечение, Если же мы хотим определить радиус, то пользуемся формулой , поскольку ядра мо­жно приближенно рассматривать как сферические.

Эффективные сечения ядер можно определить, пропуская пучок частиц высокой энергии через тонкую пластинку вещества и измеряя число частиц, не прошедших сквозь нее. Эти высоко­энергетические частицы прорываются сквозь легкое облачко электронов, но при попадании в тяжелое ядро останавливаются или отклоняются. Предположим, что у нас имеется пластинка толщиной 1 см. На такой толщине укладывается приблизитель­но атомных слоев. Однако ядра настолько малы, что вероят­ность того, что одно ядро закроет другое, очень незначительна. Можно себе представить, что высокоэнергетическая частица, налетающая на пластинку углерода толщиной 1 см, «видит» при­близительно то, что в сильно увеличенном масштабе показано на фиг. 5.10.

Фиг. 5.10. Воображаемая пла­стинка углерода толщиной 1 см при сильном увеличении (если бы были видны только ядра атомов).

Вероятность того, что очень малая частица столкнется с ядром, равна отношению площади, занимаемой ядрами (чер­ные точки), к общей площади рисунка. Пусть над областью с площадью А по всей толщине пластинки находится N атомов (разумеется, каждый с одним ядром). Тогда доля площади, за­крытая ядрами, будет равна . Пусть теперь число частиц в нашем пучке до пластинки будет равно , а после нее равно ; тогда доля частиц, не прошедших через пластинку, будет , что должно быть равно доле площади, занимаемой ядрами. Радиус же ядер вычисляется из равенства

Из таких экспериментов мы находим, что радиусы ядер ле­жат в пределах от до м. Кстати, единица длины м называется ферми в честь Энрико Ферми (1901–1958).

Что можно ожидать в области еще меньших расстояний? Можно ли их измерять? На этот вопрос пока еще нет ответа. Может быть, именно здесь, в каком-то изменении понятия про­странства или измерения на малых расстояниях, кроется раз­гадка тайны ядерных сил.