Читать «K читателям русского издания» онлайн - страница 59

ves

Что можно сказать о еще более коротких интервалах време­ни? Имеет ли смысл вообще говорить о них, если невозможно не только измерить, но даже разумно судить о процессах, про­исходящих в течение столь коротких интервалов? Возможно, нет. Это один из тех вопросов, на которые нет ответа. Может быть, кому-нибудь из вас посчастливится ответить на него в ближай­шие 20–30 лет.

§ 4. Большие времена

Рассмотрим теперь промежутки времени, большие «суток». Измерять большие времена легко: нужно просто считать дни, пока не придумаем что-нибудь лучшего. Первое, с чем мы сталкиваемся, это год – вторая естественная периодичность, состоящая приблизительно из 365 дней. Интересно, что в природе существуют естественные счетчики лет в виде годовых колец у деревьев или отложений речного ила. В некоторых случаях можно использовать эти естественные счетчики для определения времени, отделяющего нас от какого-либо отдаленного события в прошлом.

Но, когда невозможно считать годы для очень больших отрез­ков времени, нужно искать какие-то другие способы измерения. Одним из наиболее эффективных методов является использова­ние в качестве «часов» радиоактивного вещества. Здесь мы стал­киваемся с «регулярностью» иного рода, чем в случае, скажем, маятника. Радиоактивность любого вещества для последо­вательных равных интервалов времени изменяется в одно и то же число раз.

Если начертить график зависимости радиоак­тивности от времени, то мы получим кривую типа изображенной на фиг. 5.3.

Фиг. 5.3. Уменьшение ра­диоактивности со временем.

Радиоактивность падает в два раза за каждый период полураспада Т.

Мы видим, что если радиоактивность за Т дней (период полураспада) уменьшается вдвое, то за дней она уменьшится в четыре раза и т. д. Произвольный интервал време­ни t содержит tIT «периодов полураспада», и, следовательно, количество начального вещества уменьшится в раза.

Если мы знаем, что какой-то материал, например дерево, при своем образовании содержал некоторое количество А радиоактивного вещества, а прямые измерения показывают, что теперь он содержит количество В, то возраст этого материала можно просто вычислить, решив уравнение

.

А такие случаи, когда мы знаем первоначальное количество радиоактивного вещества, к счастью, существуют. Известно, например, что углекислый газ в воздухе содержит малую долю радиоактивного изотопа С14, период полураспада которого со­ставляет 5000 лет. Количество его благодаря действию косми­ческих лучей постоянно пополняется взамен распавшегося. Если мы измеряем полное содержание углерода в каком-то пред­мете и знаем, что определенная доля этого углерода была перво­начально радиоактивным С14, то нам известно и первоначальное количество А и мы можем пользоваться приведенной выше фор­мулой. Если же путем точных измерений установлено, что ос­тавшееся количество соответствует 20 периодам полураспа­да, то можно сказать, что этот органический предмет жил при­близительно 100 000 лет назад.