Читать «K читателям русского издания» онлайн - страница 112

ves

Давайте посмотрим, чем интересен Третий закон Ньютона. Предположим для простоты, что имеются только две взаимо­действующие частицы – частица 1 и частица 2, масса которых может быть различна. К какому следствию приводит равенство и противоположная направленность сил между ними? Согласно Второму закону, сила равна скорости изменения импульса со временем, так что скорость изменения импульса частицы 1 равна скорости изменения импульса частицы 2, т. е.

dp1/dt=dp2/dt (10.1)

Но если скорости изменения все время равны по величине и противоположны по направлению, то и полное изменение им­пульса частицы 1 равно и противоположно полному изменению импульса частицы 2. Это означает, что если мы сложим эти импульсы, то скорость изменения суммы под воздействием одних только взаимных сил (их обычно называют внутренними силами) будет равна нулю, т. е.

(dp1+dp2)/dt=0. . (10.2)

Напомним еще раз, что в нашей задаче мы предполагаем отсут­ствие каких-либо других сил, кроме внутренних. Но равенство нулю скорости изменения этой суммы означает просто, что величина (p1+p2) не изменяется с течением времени. (Эта величина записывается также в виде m1v1+m2v2 и называется полным импульсом двух частиц.) Таким образом, мы получили, что при наличии одних только внутренних сил полный импульс двух частиц остается неизменным. Это утверждение выражает закон сохранения полного импульса в данном случае. Из него следует, что если мы измеряем или подсчитываем величину ni1v1+m2v2, т. е. сумму импульсов двух частиц, то для любых сил, действующих между ними, как бы сложны они ни были, мы должны получить одинаковый результат как до действия сил, так и после, т. е. полный импульс остается постоянным.

Рассмотрим теперь картину посложнее, когда есть три или большее число взаимодействующих частиц. Очевидно, что если существуют только внутренние силы, то полный импульс всех частиц остается постоянным, поскольку увеличение им­пульса одной частицы под воздействием другой частицы в точ­ности компенсируется уменьшением импульса этой второй частицы из-за противодействия первой, т. е. внутренние силы так сбалансированы, что полный импульс всех частиц изменить­ся не может. Таким образом, если нет сил, действующих на систему извне (внешних сил), то ничто не может изменить ее полный импульс и, следовательно, он остается постоянным.

Но нужно еще сказать о том, что произойдет, если будут еще существовать какие-то другие силы, кроме сил взаимо­действия между частицами. Предположим, что мы изолировали систему взаимодействующих частиц. Если имеются только взаимные силы, полный импульс, как и прежде, меняться не будет, сколь бы сложны ни были эти силы. Если, однако, существуют силы, обусловленные частицами вне этой изолиро­ванной группы, то, как мы докажем позднее, сумма всех этих внешних сил равна скорости изменения полного импульса всех внутренних частиц. Это очень полезная теорема.

Закон сохранения полного импульса некоторого числа взаимодействующих частиц в отсутствие внешних сил можно записать в виде

m1v1+m2v2 +m3v3+ ...=const, (10.3)