Читать «Превращения гиперболоида инженера Гарина» онлайн - страница 69

Ирина Львовна Радунская

Не беспочвенная ли это идея — сделать так, чтобы стенка, оставаясь стенкой во всех смыслах этого слова, перестала быть ею с точки зрения взаимодействия с внутренней энергией атома?

Оказалось, что такие стенки можно создать. Для этого их следует покрыть каким-либо веществом, молекулы которого очень слабо взаимодействуют с атомами водорода. Долгие поиски показали, что такие вещества существуют и лучшими из них являются особые сорта парафина и замечательная пластмасса фторопласт, известная также под названием тефлон. Особенность парафинов состоит в том, что почти все электрические поля входящих в них атомов использованы на образование самих молекул парафина. Эта молекула имеет вид длинной цепочки атомов углерода, защищенных от внешнего мира связанными с ними атомами водорода. В результате такого строения молекула парафина взаимодействует с другими молекулами главным образом своими концами. Это проявляется, в частности, в том, что парафин кажется нам очень скользким, потому что его длинные молекулы легко перемещаются одна вдоль другой.

Все сказанное в большой степени относится и к тефлону, сравнительно твердой, термостойкой и очень скользкой на ощупь пластмассе. Только в ней основную защитную роль играют не атомы водорода, а атомы фтора.

Химики описывают свойства молекул парафина и тефлона на своем языке, говоря, что все связи входящих в них атомов насыщены. Они не могут активно связываться с другими атомами и молекулами. Поэтому парафин и тефлон химически пассивны. Они не реагируют даже с плавиковой кислотой, которая в отличие от других кислот растворяет и такое стойкое вещество, как стекло.

Атомы водорода могут десятки тысяч раз сталкиваться с поверхностями, покрытыми парафином или тефлоном, не передавая им свою внутреннюю энергию и не теряя способности излучить эту энергию в виде радиоволн.

Расчет показал, что времени пребывания атома в резонаторе с защищенными стенками достаточно для того, чтобы атом излучил радиоволну до того, как он случайно попадет в отверстие, через которое ранее вошел в резонатор, и покинет его. Это определяет и размер отверстия: если оно слишком велико, атом покинет резонатор, не высветившись и унеся обратно свою избыточную энергию. Если же отверстие слишком мало, то атом и после высвечивания будет долго летать внутри резонатора в качестве приемника и может поглотить порцию энергии, ранее излученной другими атомами или им самим. Слишком малое отверстие затрудняет и питание резонатора пучком активных атомов.

Так Рэмси сумел превратить стенки в своеобразные зеркала, отражавшие атомы водорода без изменения их внутренней энергии. Атомы летали в резонаторе три-четыре секунды и за это время излучали в нем свою энергию.

Но действительно ли это выход из тупика? Ведь атомы, хаотически блуждающие между стенками, — это уже не пучок, а газ. А создать генератор радиоволн на газе — это именно то, что всегда считалось невозможным. Здесь возникало два, казалось, непреодолимых препятствия. Впрочем, первое было действительно непреодолимым только для обычных газов. Для газов, находящихся в состоянии теплового равновесия.