Читать «Проклятые вопросы» онлайн - страница 55

Ирина Львовна Радунская

Здесь нет места рассказу о трудоёмких проверках эффективности детектора нейтрино, об оценках возможных помех и о новых расчётах величины потока нейтрино, испускаемых Солнцем. Скажем только, что первые результаты опытов были обескураживающими. Удалось зафиксировать лишь десятую часть от того количества нейтрино, которое должно было бы возникнуть в ходе углеродо-азотного цикла горения водорода. И лишь половину от того количества, которое могло бы возникнуть при непосредственном синтезе гелия из протонов. Как это понять? Какие выводы очевидны?

Попытки объяснить этот результат привели к возникновению новых гипотез. Например, Понтекорво и В.Н. Грибов предположили, что почти половина нейтрино, рождающихся в недрах Солнца (электронные нейтрино), может на пути из недр Солнца к детектору превращаться в нейтрино другого типа — мюонные нейтрино, а детектор Девиса не способен их обнаружить.

КОЛЛАПС

Нам интересно знать, как и почему обыкновенная звезда становится сверхновой, какие процессы превращают её в очаг ярчайшего излучения. Поэтому, ознакомившись с нейтрино и с возникновением нейтринной астрономии, уясним суть такого явления, как гравитационный коллапс звёзд.

Повторим, что длительное свечение звёзд обеспечивается энергией, возникающей за счёт термоядерных реакций, происходящих в их недрах. Помните, мы говорили о «горении» протонов, о превращении протонов в ядра гелия? Именно это обеспечивает наиболее длительную часть эволюции нормальных звёзд.

Когда значительная часть протонов исчерпана, выделение термоядерной энергии уменьшается. И внутреннее давление в звезде уже не способно уравновесить гравитационные силы, стремящиеся сжать звезду. При сжатии радиус звезды стремительно уменьшается, а гравитационная энергия переходит в тепловую.

Когда температура в центре звезды увеличивается с двадцати до двухсот миллионов градусов, начинается новый цикл термоядерных реакций. Результатом этого цикла является превращение трёх ядер гелия в одно ядро углерода, что тоже сопровождается выделением большого количества энергии и на время останавливает сжатие звезды. После исчерпания гелия равновесие звезды вновь нарушается, её радиус быстро уменьшается, а температура ещё более увеличивается за счёт превращения гравитационной энергии в тепловую. При этом включается новая термоядерная реакция, вновь обеспечивающая выделение энергии, и звезда опять приходит в стационарное состояние. Так происходит несколько раз в зависимости от исходной массы звезды.

Если масса звезды меньше или равна массе Солнца, то её гравитационной энергии недостаточно, чтобы обеспечить увеличение температуры, необходимой для начала одного из очередных циклов термоядерной реакции. При этом звезда превращается в белого карлика. Температура карлика постепенно уменьшается. Это неизбежно, и её падение происходит по мере исчерпания энергии радиоактивных превращений. Идёт также медленное выделение гравитационной энергии при постепенном сжатии звезды.

Если же масса звезды превосходит 1,2 массы Солнца, то её ждёт иная судьба. Одна за другой последовательно включаются новые термоядерные реакции. Каждая из них начинается после того, как очередная стадия сжатия увеличивает температуру ядра звезды до порога, за которым начинается эта реакция. Затем следует новая спокойная стадия — сгорают наиболее лёгкие из оставшихся ядер. В качестве «золы» при этом горении возникают более тяжёлые ядра. Так рождаются гелий при горении водорода и углерод при горении гелия.