Читать «K читателям русского издания» онлайн - страница 97

ves

а

,

то .

Но нам нужна не сама величина , а отношение . После деления на получим выражение

, которое после устремления к нулю превратится в

.

В этом состоит процесс взятия производной, или дифференциро­вания функций. На самом деле он несколько легче, чем это ка­жется на первый взгляд. Заметьте, что если в разложениях, по­добных предыдущим, встречаются члены, пропорциональные или или еще более высоким степеням, то их можно сразу вычеркнуть, поскольку они все равно обратятся в нуль, когда в конце мы будем t устремлять к нулю. После небольшой тренировки вы сразу будете видеть, что нужно оставлять, а что сразу отбрасывать. Существует много правил и формул для дифференцирования различных видов функций. Их можно либо запомнить, либо пользоваться специальными таблицами. Небольшой список таких правил приводится в табл. 8,3.

Таблица 8.3      некоторые производные

s, u, v, wпроизвольные функции;

а, b, с, nпроизвольные постоянные.

§ 4. Расстояние как интеграл

Обсудим теперь обратную проблему. Пусть вместо таблицы расстояний нам дана таблица скоростей в различные моменты времени, начиная с нуля. В табл. 8.4 представлена зависимость скорости падающего шара от времени. Аналогичную таблицу можно составить и для машины, если записывать показания спидометра через каждую минуту или полминуты. Но можно ли, зная скорость машины в любой момент времени, вычислить расстояние, которое ею было пройдено?

Таблица 8.4      скорость падающего шара

Эта задача обратна той, которую мы только что рассмотрели. Как же решить ее, если скорость машины непостоянна, если она то ускоряется до 90 км/час, то замедляется, затем где-то останавливается у свето­фора и т.д.? Сделать это нетрудно. Нужно использовать ту же идею и выражать полное расстояние через бесконечно малые его части. Пусть в первую секунду скорость будет v1 , тогда по формуле s= v1t можно вычислить расстояние, пройденное за эту секунду. В следующую секунду скорость будет несколько другой, хотя, может быть, и близкой к первоначальной, а расстояние, пройденное машиной за вторую секунду, будет равно новой скорости, умноженной на интервал времени (1 сек). Этот процесс можно продолжить дальше, до самого конца пути. В ре­зультате мы получим много маленьких отрезков, которые в сум­ме дадут весь путь. Таким образом, путь является суммой ско­ростей, умноженных на отдельные интервалы времени, или s = vt, где греческая буква (сигма) означает сумми­рование. Точнее, это будет сумма скоростей в некоторые мо­менты времени, скажем ti , умноженные на t: