Читать «K читателям русского издания» онлайн - страница 91

ves

Это один способ описать движение. Есть и другой способ – графический. Если по горизонтали откладывать время, а по вер­тикали – расстояние, то получим кривую, подобную изобра­женной на фиг. 8.1.

Фиг. 8.1. График зависимости расстояния, пройденного маши­ной, от времени.

Из рисунка видно, что с увеличением вре­мени расстояние тоже увеличивается, сначала очень медленно, а затем все быстрее и быстрее. В районе четырех минут проис­ходит замедление, а затем расстояние опять увеличивается в те­чение нескольких минут, и, наконец, на девятой минуте машина останавливается. Все эти сведения можно получить прямо из графика, не используя таблицы. Конечно, для построения на­шего графика необходимо знать, где находится автомобиль не только каждую минуту, но и каждые полминуты, а может быть, и еще точнее. Кроме того, мы предполагаем, что машина где-то находится в любой момент времени.

Так что движение автомобиля выглядит все же сложно. Да­вайте рассмотрим что-нибудь попроще, с более простым законом движения: например, падающий шар. В табл. 8.2 даны значения времени в секундах и расстояния в метрах.

Таблица 8.2      расписание движения падающего шара

За нулевой момент выберем момент начала падения. Через 1 сек после начала паде­ния шарик пролетает 5м, через 2 сек – 20 м, через 3 сек – 45м. Если отложить эти числа на графике, то получим параболиче­скую кривую зависимости расстояния от времени для падающего тела (фиг. 8.2), которая описывается формулой

.                              (8.1)

Фиг. 8.2. График зависимости расстояния, пройденного падающим шаром, от времени.

Эта формула позволяет вычислить расстояние для любого момента времени. Вы скажете, что для первого графика (см.фиг. 8.1) тоже должна быть какая-то формула. Действитель­но это так. Ее можно записать в таком абстрактном виде:

s=f(t)            (8.2)

Это означает, что s – величина, зависящая от t, или, как гово­рят математики, s есть функция t. Однако мы не знаем, что это за функция, точнее, мы не можем записать ее через какие-то известные нам функции.

На этих двух примерах видно, что любое движение можно описать в общей и простой форме. Казалось бы, нет ничего хит­рого! Однако хитрости все же есть, и не одна! Во-первых, что мы понимаем под пространством и временем? Это, оказывается, очень глубокие философские вопросы, которые нужно вниматель­но проанализировать, что не так-то легко. Теория относитель­ности показывает, что понятия пространства и времени не так просты, как это кажется на первый взгляд. Впрочем, сейчас для начала нам не нужна такая скрупулезность в определении этих понятий. Возможно, вы скажете: «Странно, мне всегда го­ворили, что в науке все должно определяться точно». Это не так. Мы не можем определить точно все без исключения! Если бы мы пытались это сделать, то получилось бы нечто похожее на спор двух «философов», где один говорит: «Вы сами не знаете, о чем го­ворите»; а второй отвечает: «А что такое «знать»? Что такое «го­ворить»? Что такое «вы», наконец?» Ну и так до бесконечности. Так что для пользы дела лучше сначала условиться, что мы будем говорить хотя бы приблизительно об одних и тех же вещах. Сейчас вы достаточно много знаете о времени, но помните, что здесь есть некоторые тонкости, которые мы еще обсудим в дальнейшем.